Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(14): 9614-9622, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38545685

RESUMO

Glycosides make up a biomedically important class of secondary metabolites. Most naturally occurring glycosides were isolated from plants and bacteria; however, the chemical diversity of glycosylated natural products in fungi remains largely unexplored. Herein, we present a paradigm to specifically discover diverse and bioactive glycosylated natural products from fungi by combining tailoring enzyme-guided genome mining with mass spectrometry (MS)-based metabolome analysis. Through in vivo genes deletion and heterologous expression, the first fungal C-glycosyltransferase AuCGT involved in the biosynthesis of stromemycin was identified from Aspergillus ustus. Subsequent homology-based genome mining for fungal glycosyltransferases by using AuCGT as a probe revealed a variety of biosynthetic gene clusters (BGCs) containing its homologues in diverse fungi, of which the glycoside-producing capability was corroborated by high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. Consequently, 28 fungal aromatic polyketide C/O-glycosides, including 20 new compounds, were efficiently discovered and isolated from the three selected fungi. Moreover, several novel fungal C/O-glycosyltransferases, especially three novel α-pyrone C-glycosyltransferases, were functionally characterized and verified in the biosynthesis of these glycosides. In addition, a proof of principle for combinatorial biosynthesis was applied to design the production of unnatural glycosides in Aspergillus nidulans. Notably, the newly discovered glycosides exhibited significant antiviral, antibacterial, and antidiabetic activities. Our work demonstrates the promise of tailoring enzyme-guided genome-mining approach for the targeted discovery of fungal glycosides and promotes the exploration of a broader chemical space for natural products with a target structural motif in microbial genomes.


Assuntos
Aspergillus nidulans , Produtos Biológicos , Glicosiltransferases/metabolismo , Metaboloma , Espectrometria de Massas , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Glicosídeos , Família Multigênica
2.
BMC Pulm Med ; 24(1): 116, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443860

RESUMO

BACKGROUND: Little attention has been paid to the pathophysiological changes in the natural history of chronic obstructive pulmonary disease (COPD). The destructions of the small airways were visualized on thoracic micro-computed tomography scan. We investigated whether small airway inflammation (SAI) was the risk for the development of COPD. METHODS: A total of 1062 patients were enrolled and analyzed in the study. The partitioned airway inflammation was determined by exhaled nitric oxide (NO) of FnNO, FeNO50, FeNO200, and calculated CaNOdual. Both FeNO200 and CaNOdual were compared to detect the promising predictor for peripheral airway/alveolar inflammation in COPD. The correlation between exhaled NO and white cell classification was evaluated to determine the inflammation type during the development of COPD. RESULTS: Exhaled NO levels (FnNO, FeNO50, FeNO200, and CaNOdual) were the highest in the COPD group compared with all other groups. Furthermore, compared with controls, exhaled NO levels (FeNO50, FeNO200, and CaNOdual) were also significantly higher in the emphysema, chronic bronchitis, and smoking groups. FeNO200 was found to be a promising predictor for peripheral airway/alveolar inflammation (area under the curve [AUC] of the receiver operating characteristic [ROC] curve, area under the curve [AUC] = 0.841) compared with CaNOdual (AUC ROC = 0.707) in COPD. FeNO200 was the main risk factor (adjusted odds ratio, 2.191; 95% CI, 1.797-2.671; p = 0.002) for the development of COPD. The blood eosinophil and basophil levels were correlated with FeNO50 and FeNO200. CONCLUSION: The complete airway inflammations were shown in COPD, whereas SAI was the main risk factor for the development of COPD, which might relate to eosinophil and basophil levels.


Assuntos
Bronquite Crônica , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Microtomografia por Raio-X , Inflamação , Óxido Nítrico
3.
Sci Prog ; 107(1): 368504241228106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312046

RESUMO

Aiming at the problems of poor adjustment effect, weak anti-disturbance ability, and low robustness of the traditional sliding mode algorithm for permanent magnet synchronous motor speed sensorless, a permanent magnet synchronous motor speed observation method combining super-twisting sliding mode control algorithm and fuzzy control is proposed to accelerate the convergence speed of the system and improve the anti-disturbance ability. Fuzzy rules are used to solve the problem of obtaining the upper bound of the boundary function in the super-twisting algorithm. Moreover, the fuzzy algorithm is used to output the variable sliding mode gain instead of the fixed sliding mode coefficient to improve the system robustness and suppress the jitter. The simulation results show that the overshoot of the control system is 4%, the lag time is not more than 0.003 ms, the speed error is not more than 1%, and the response and adjustment time is not more than 0.02 s. The proposed control strategy improves the tracking accuracy and response speed of the system, suppresses the sliding mode chattering, and enhances the anti-interference ability of the system.

4.
J Antibiot (Tokyo) ; 77(3): 193-198, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38148392

RESUMO

Intestinal fungi, which are important parts of the gut microbiota, have the ability to produce specialized metabolites that significantly contribute to maintaining the balance of the gut microbiota and promoting the health of the host organism. In the present study, two new glycosides, including fusintespyrone A (1) and cerevisterolside A (4), as well as ten known compounds were isolated from the intestinal fungus Fusarium sp. LE06. The structures of the new compounds were elucidated by a combination of spectroscopic methods, such as mass spectrometry (MS) and nuclear magnetic resonance (NMR), along with chemical reactions and calculations of NMR and ECD spectra. Compounds 1-3 showed significant growth inhibition against Aspergillus fumigatus, Fusarium oxysporum, and Verticillium dahliae with MIC values in the range of 1.56-6.25 µg ml-1.


Assuntos
Ascomicetos , Fusarium , Antifúngicos/química , Fusarium/metabolismo , Ascomicetos/metabolismo , Aspergillus fumigatus/metabolismo , Espectroscopia de Ressonância Magnética
5.
Food Funct ; 15(2): 530-542, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38108452

RESUMO

Methyl Ganoderate E (MGE) is a triterpenoid derived from Ganoderma lucidum (Reishi), an edible mushroom, commonly processed into food forms such as soups, drinks, culinary dishes, and supplements. MGE has been shown to inhibit 3T3-L1 murine adipocyte differentiation when combined with other G. lucidum triterpenes. However, the specific effect of MGE on biological processes remains unknown. In this study, we present the first evidence of MGE's anti-aging effect in Caenorhabditis elegans. Through our screening process using the UPRER regulation ability, we evaluated a library of 74 pure compounds isolated from G. lucidum, and MGE exhibited the most promising results. Subsequent experiments demonstrated that MGE extended the lifespan by 26% at 10 µg ml-1 through daf-16, hsf-1, and skn-1-dependent pathways. MGE also enhanced resistance to various molecular stressors, improved healthspan, increased fertility, and reduced the aggregation of alpha-synuclein and amyloid-beta. Transcriptome data revealed that MGE promoted processes associated with proteolysis and neural activity, while not promoting cell death processes. Collectively, our findings suggest that G. lucidum MGE could be considered as a potential anti-aging intervention, adding to the growing list of such interventions.


Assuntos
Ganoderma , Reishi , Triterpenos , Camundongos , Animais , Longevidade , Caenorhabditis elegans/genética , Envelhecimento , Triterpenos/farmacologia
6.
J Agric Food Chem ; 71(47): 18385-18394, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37888752

RESUMO

Pseudodiploöspora longispora (previously known as Diploöspora longispora) is a pathogenic fungus of Morchella mushrooms. The molecular mechanism underlying the infection of P. longispora in fruiting bodies remains unknown. In this study, three known peptaibols, alamethicin F-50, polysporin B, and septocylindrin B (1-3), and a new analogue, longisporin A (4), were detected and identified in the culture of P. longispora and the fruiting bodies of M. sextelata infected by P. longispora. The primary amino sequence of longisporin A is defined as Ac-Aib1-Pro2-Aib3-Ala4-Aib5-Aib6-Gln7-Aib8-Val9-Aib10-Glu11-Leu12-Aib13-Pro14-Val15-Aib16-Aib17-Gln18-Gln19-Phaol20. The peptaibols 1-4 greatly suppressed the mycelial growth of M. sextelata. In addition, treatment with alamethicin F-50 produced damage on the cell wall and membrane of M. sextelata. Compounds 1-4 also exhibited inhibitory activities against human pathogens including Aspergillus fumigatus, Candida albicans, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, and plant pathogen Verticillium dahlia. Herein, peptaibols are confirmed as virulence factors involved in the invasion of P. longispora on Morchella, providing insights into the interaction between pathogenic P. longispora and mushrooms.


Assuntos
Agaricales , Ascomicetos , Staphylococcus aureus Resistente à Meticilina , Humanos , Peptaibols/farmacologia , Candida albicans , Antibacterianos/farmacologia
7.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511426

RESUMO

Coordinated cell proliferation and differentiation result in the complex structure of the inflorescence in wheat. It exhibits unique differentiation patterns and structural changes at different stages, which have attracted the attention of botanists studying the dynamic regulation of its genes. Our research aims to understand the molecular mechanisms underlying the regulation of spike development genes at different growth stages. We conducted RNA-Seq and qRT-PCR evaluations on spikes at three stages. Our findings revealed that genes associated with the cell wall and carbohydrate metabolism showed high expression levels between any two stages throughout the entire process, suggesting their regulatory role in early spike development. Furthermore, through transgenic experiments, we elucidated the role of the cell wall regulator gene in spike development regulation. These research results contribute to identifying essential genes associated with the morphology and development of wheat spike tissue.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Triticum , Inflorescência/genética , Parede Celular/genética , Regulação da Expressão Gênica de Plantas
8.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373033

RESUMO

Drought has become a major limiting factor for wheat productivity, and its negative impact on crop growth is anticipated to increase with climate deterioration in arid areas. Xyloglucan endoglycosylases/hydrolases (XTHs) are involved in constructing and remodeling cell wall structures and play an essential role in regulating cell wall extensibility and stress responses. However, there are no systematic studies on the wheat XTH gene family. In this study, 71 wheat XTH genes (TaXTHs) were characterized and classified into three subgroups through phylogenetic analysis. Genomic replication promoted the expansion of TaXTHs. We found a catalytically active motif and a potential N-linked glycosylation domain in all TaXTHs. Further expression analysis revealed that many TaXTHs in the roots and shoots were significantly associated with drought stress. The wheat TaXTH12.5a gene was transferred into Arabidopsis to verify a possible role of TaXTHs in stress response. The transgenic plants possessed higher seed germination rates and longer roots and exhibited improved tolerance to drought. In conclusion, bioinformatics and gene expression pattern analysis indicated that the TaXTH genes played a role in regulating drought response in wheat. The expression of TaXTH12.5a enhanced drought tolerance in Arabidopsis and supported the XTH genes' role in regulating drought stress response in plants.


Assuntos
Arabidopsis , Resistência à Seca , Triticum/metabolismo , Arabidopsis/metabolismo , Filogenia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
WIREs Mech Dis ; 15(5): e1611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37157158

RESUMO

Fungi, being a necessary component of the gut microbiome, potentially have direct or indirect effects on the health and illness status of the host. The gut mycobiome is an inducer of the host's immunity, maintaining intestinal homeostasis, and protecting against infections, as well as a reservoir of opportunistic microorganisms and a potential cofactor when the host is immunocompromised. In addition, gut fungi interact with a diverse range of microbes in the intestinal niches. In this article, we reviewed the composition of gut mycobiome, their association with host health and illness, and summarized the specific Candida albicans-host interactions, in order to provide insights and directions for the ongoing study of fungi. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.


Assuntos
Microbioma Gastrointestinal , Micobioma , Microbioma Gastrointestinal/fisiologia , Micobioma/fisiologia , Candida albicans
10.
Nat Prod Rep ; 40(6): 1078-1093, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37013809

RESUMO

Covering: 2014 to June 2022The gut microbiota has attracted increasing attention from researchers due to its critical role in regulating human physiology and pathophysiology. Natural products (NPs) produced or transformed by gut microbes are key signalling mediators for a variety of physiological functions. On the other hand, NPs from ethnomedicines have also been found to generate health benefits through modulation of the gut microbiota. In this highlight, we review the most recent studies related to gut microbiota-derived NPs and bioactive NPs that regulate physiological and pathological processes via gut microbiota-associated mechanisms. We also outline the strategies for the discovery of gut microbiota-derived NPs and the methodologies of how to elucidate the crosstalk between bioactive NPs and the gut microbiota.


Assuntos
Produtos Biológicos , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Produtos Biológicos/farmacologia , Medicina Tradicional
11.
Protein Cell ; 14(10): 776-785, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37013853

RESUMO

Interactions between gut microbiome and host immune system are fundamental to maintaining the intestinal mucosal barrier and homeostasis. At the host-gut microbiome interface, cell wall-derived molecules from gut commensal bacteria have been reported to play a pivotal role in training and remodeling host immune responses. In this article, we review gut bacterial cell wall-derived molecules with characterized chemical structures, including peptidoglycan and lipid-related molecules that impact host health and disease processes via regulating innate and adaptive immunity. Also, we aim to discuss the structures, immune responses, and underlying mechanisms of these immunogenic molecules. Based on current advances, we propose cell wall-derived components as important sources of medicinal agents for the treatment of infection and immune diseases.


Assuntos
Microbioma Gastrointestinal , Mucosa Intestinal , Bactérias , Sistema Imunitário , Simbiose , Imunidade nas Mucosas , Imunidade Inata
12.
J Fungi (Basel) ; 8(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36294623

RESUMO

Two new cyclohexadepsipeptides japonamides A (1) and B (2) were isolated from the ethyl acetate extract of a marine-sponge-derived fungus Aspergillus japonicus based on molecular networking. Their structures were elucidated by comprehensive spectral analysis and their absolute configurations were confirmed by Marfey's method. Compounds 1 and 2 showed no antifungal activities against Candida albicans SC5314 measured by the broth microdilution method but exhibited prominent synergistic antifungal activities in combination with fluconazole, ketoconazole, or rapamycin. The Minimum inhibitory concentrations (MICs) of rapamycin, fluconazole, and ketoconazole were significantly decreased from 0.5 to 0.002 µM, from 0.25 to 0.063 µM, and from 0.016 to 0.002 µM, in the presence of compounds 1 or 2 at 3.125 µM, 12.5 µM, and 6.25 µM, respectively. Surprisingly, the combination of compounds 1 or 2 with rapamycin showed a strong synergistic effect, with fractional inhibitory concentration index (FICI) values of 0.03.

13.
Eur J Med Chem ; 243: 114713, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36087386

RESUMO

Pleuromutilins, the unique fungal metabolites possessing 5/6/8 tricyclic skeleton, are potent antibacterial leading compounds for the development of new antibiotics. We applied the MS/MS molecular networking technique and the combinatorial biosynthesis approach to discover new pleuromutilin analogues. Ten pleuromutilin derivatives including seven new compounds (1-7) were obtained from the solid culture of Omphalina mutila. The gene cluster for the biosynthesis of pleuromutilins in the mushroom of O. mutila was identified and further expressed in yeast. Nine pleuromutilin-type diterpenes including three new "unnatural" pleuromutilins (16-18) were generated in a GGPP-engineered Saccharomyces cerevisiae. The antimicrobial bioassays indicated that compounds 3, 9, 10, 15, and 17 exhibited potent inhibition against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE). Several pleuromutilins were found to show immunomodulatory activities by promoting the cell viability, enhancing the ROS and NO production, or increasing the levels of proinflammatory cytokines IL-6 and TNF-α in the macrophage RAW 264.7. The structure-activity relationship for pleuromutilins was analyzed.


Assuntos
Diterpenos , Staphylococcus aureus Resistente à Meticilina , Compostos Policíclicos , Espectrometria de Massas em Tandem , Compostos Policíclicos/farmacologia , Diterpenos/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
14.
Carbohydr Polym ; 295: 119862, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35989006

RESUMO

Polysaccharides are known to confer protection against obesity via modulation of gut microbiota. To expand our knowledge of mushroom-derived prebiotics, we investigated the structural characteristics and anti-obesity effects of Lyophyllum decastes polysaccharides. Two heteroglycans were purified and characterized. The isolated polysaccharides effectively reduced obesity and the related disorders in the diet-induced obese (DIO) mice. An altered gut microbiota with enrichments of Bacteroides intestinalis and Lactobacillus johnsonii and an increase of secondary bile acids were detected in the polysaccharide-treated mice. Supplementation of B. intestinalis and L. johnsonii prevented the obesity and hyperlipidemia in DIO mice, demonstrating their causal linkage to the efficacy of polysaccharides. An enhancement of energy expenditure in the brown adipose tissues due to up-regulation of the secondary bile acids-activated TGR5 pathway was deduced to be one of the mechanisms underlying the effect of polysaccharides. These results confirmed Lyophyllum decastes-derived polysaccharides as new prebiotics for preventing and treating obesity.


Assuntos
Agaricales , Microbioma Gastrointestinal , Animais , Ácidos e Sais Biliares , Dieta Hiperlipídica , Metabolismo Energético , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/prevenção & controle , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Prebióticos
15.
Mar Drugs ; 20(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35621953

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA), a WHO high-priority pathogen that can cause great harm to living beings, is a primary cause of death from antibiotic-resistant infections. In the present study, six new compounds, including fumindoline A-C (1-3), 12ß, 13ß-hydroxy-asperfumigatin (4), 2-epi-tryptoquivaline F (17) and penibenzophenone E (37), and thirty-nine known ones were isolated from the marine-derived fungus Aspergillus fumigatus H22. The structures and the absolute configurations of the new compounds were unambiguously assigned by spectroscopic data, mass spectrometry (MS), electronic circular dichroism (ECD) spectroscopic analyses, quantum NMR and ECD calculations, and chemical derivatizations. Bioactivity screening indicated that nearly half of the compounds exhibit antibacterial activity, especially compounds 8 and 11, and 33-38 showed excellent antimicrobial activities against MRSA, with minimum inhibitory concentration (MIC) values ranging from 1.25 to 2.5 µM. In addition, compound 8 showed moderate inhibitory activity against Mycobacterium bovis (MIC: 25 µM), compound 10 showed moderate inhibitory activity against Candida albicans (MIC: 50 µM), and compound 13 showed strong inhibitory activity against the hatching of a Caenorhabditis elegans egg (IC50: 2.5 µM).


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Aspergillus fumigatus , Candida albicans , Testes de Sensibilidade Microbiana
16.
ACS Omega ; 7(14): 11722-11730, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449942

RESUMO

Herein, we developed an efficient and convenient method to address the problem of thickener decomposition in the low- permeability oilfield production process. It is crucial to design breakers that reduce viscosity by delaying thickener decomposition in appropriate environments. By using lignin in biomass as a substrate for ß-mannanase immobilization (MIL), we fabricated a gel breaker, surface gelatin-coated ß-mannanase-immobilized lignin (Ge@MIL). Through experiments and performance tests, we confirmed that the prepared Ge@MIL can release enzymes at a specific temperature, meanwhile having temperature-sensitive phase change properties and biodegradability. The results also show the tight tuning over the surface coating of Ge@MIL by a water-in-oil emulsion. Therefore, the prepared Ge@MIL has a promising application in the field of oil extraction as a green and efficient temperature-sensitive sustained-release capsule.

17.
Antibiotics (Basel) ; 11(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35203768

RESUMO

Fungal natural products play a prominent role in the development of pharmaceuticalagents. Two new cyclic tetrapeptides (CTPs), westertide A (1) and B (2), with eight known compounds (3-10) were isolated from the fungus Aspergillus westerdijkiae guided by OSMAC (one strain-many compounds) and molecular networking strategies. The structures of new compounds were unambiguously determined by a combination of NMR and mass data analysis, and chemical methods. All of the isolates were evaluated for antimicrobial effects, synergistic antifungal activity, cytotoxic activity, and HDAC inhibitory activity. Compounds 1-2 showed synergistic antifungal activity against Candida albicans SC5314 with the presence of rapamycin and weak HDAC (histone deacetylase) inhibitory activity. These results indicate that molecular networking is an efficient approach for dereplication and identification of new CTPs. CTPs might be a good starting point for the development of synergistic antifungal agents.

18.
J Fungi (Basel) ; 8(2)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35205896

RESUMO

Under the guidance of LC-MS/MS-based molecular networking, seven new verrucosidin derivatives, penicicellarusins A-G (3-9), were isolated together with three known analogues from the fungus Penicillium cellarum. The structures of the new compounds were determined by a combination of NMR, mass and electronic circular dichroism spectral data analysis. The absolute configuration of penicyrone A (10) was corrected based on X-ray diffraction analyses. Bioactivity screening indicated that compounds 1, 2, and 4 showed much stronger promising hypoglycemic activity than the positive drug (rosiglitazone) in the range of 25-100 µM, which represents a potential new class of hypoglycemic agents. Preliminary structure-activity relationship analysis indicates that the formation of epoxy ring on C6-C7 in the structures is important for the glucose uptake-stimulating activity. The gene cluster for the biosynthesis of 1-12 is identified by sequencing the genome of P. cellarum and similarity analysis with the gene cluster of verrucosidins in P. polonicum.

19.
Acta Pharm Sin B ; 11(9): 2945-2956, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589407

RESUMO

Mushroom-derived cyathane-type diterpenes possess unusual chemical skeleton and diverse bioactivities. To efficiently supply bioactive cyathanes for deep studies and explore their structural diversity, de novo synthesis of cyathane diterpenes in a geranylgeranyl pyrophosphate engineered Saccharomyces cerevisiae is investigated. Aided by homologous analyses, one new unclustered FAD-dependent oxidase EriM accounting for the formation of allyl aldehyde and three new NADP(H)-dependent reductases in the biosynthesis of cyathanes are identified and elucidated. By combinatorial biosynthetic strategy, S. cerevisiae strains generating twenty-two cyathane-type diterpenes, including seven "unnatural" cyathane xylosides (12, 13, 14a, 14b, 19, 20, and 22) are established. Compounds 12-14, 19, and 20 show significant neurotrophic effects on PC12 cells in the dose of 6.3-25.0 µmol/L. These studies provide new insights into the divergent biosynthesis of mushroom-originated cyathanes and a straightforward approach to produce bioactive cyathane-type diterpenes.

20.
J Anim Sci ; 99(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33939812

RESUMO

Automatic feeding systems in pig production allow for the recording of individual feeding behavior traits, which might be influenced by the social interactions among individuals. This study fitted mixed models to estimate the direct and social effects on visit duration at the feeder of group-housed pigs. The dataset included 74,413 records of each visit duration time (min) event at the automatic feeder from 135 pigs housed in 14 pens. The sequence of visits at the feeder was employed as a proxy for the social interaction between individuals. To estimate animal effects, the direct effect was apportioned to the animal feeding (feeding pig), and the social effect was apportioned to the animal that entered the feeder immediately after the feeding pig left the feeding station (follower). The data were divided into two subsets: "non-immediate replacement" time (NIRT, N = 6,256), where the follower pig occupied the feeder at least 600 s after the feeding pig left the feeder, and "immediate replacement" time (IRT, N = 58,255), where the elapsed time between replacements was less than or equal to 60 s. The marginal posterior distribution of the parameters was obtained by Bayesian method. Using the IRT subset, the posterior mean of the proportion of variance explained by the direct effect (PrpσTemefós) was 18% for all models. The proportion of variance explained by the follower social effect (Prpσ^f2) was 2%, and the residual variance (σ^e2) decreased, suggesting an improved model fit by including the follower effect. Fitting the models with the NIRT subset, the estimate of PrpσTemefós was 20% but the Prpσ^f2 was almost zero and σ^e2 was identical for all models. For the IRT subset, the predicted best linear unbiased predictor (BLUP) of direct (Direct BLUP) and social (Follower BLUP) random effects on visit duration at the feeder of an animal was calculated. Feeder visit duration time was not correlated with traits, such as weight gain or average feed intake (P > 0.05), whereas for the daily feeder occupation time, the estimated correlation was positive with the Direct BLUP (r^ = 0.51, P < 0.05) and negative with the Follower BLUP (r^= -0.26, P < 0.05). The results suggest that the visit duration of an animal at the single-space feeder was influenced by both direct and social effects when the replacement time between visits was less than 1 min. Finally, animals that spent a longer time per day at the feeder seemed to do so by shortening the meal length of the preceding individual at the feeder.


Assuntos
Ingestão de Alimentos , Comportamento Alimentar , Ração Animal/análise , Animais , Teorema de Bayes , Suínos , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...